
Using KubeVirt on SUSE Linux
Enterprise

Jim Fehlig and Vasily Ulyanov

KubeVirt is a virtual machine management add-on for Kubernetes. KubeVirt
extends Kubernetes by adding additional virtualization resource types
through Kubernetes' Custom Resource Denitions (CRD) API. Along with
the Custom Resources, KubeVirt includes controllers and agents that
provide virtual machine management capabilities on the cluster. By using
this mechanism, the Kubernetes API can be used to manage virtual machine
resources similar to other Kubernetes resources.

Publication Date: June 12, 2025

Contents

1 KubeVirt components 3

2 Installing KubeVirt on Kubernetes 4

3 Updating the KubeVirt deployment 5

4 Deleting KubeVirt from a cluster 5

5 Containerized Data Importer 6

6 Running virtual machines 6

7 Live migration 8

8 Volume hotplugging 10

1 | SLES 15 SP6

9 Running Windows VMs with VMDP ISO 10

10 Supported features 11

11 Debugging 13

2 | SLES 15 SP6

1 KubeVirt components

KubeVirt consists of two RPM-based packages and six container images that provide the Kuber-
netes virtual machine management extension. The RPM packages include kubevirt-virtctl
and kubevirt-manifests. The container images include virt-api, virt-controller, virt-
handler, virt-launcher, and virt-operator, libguestfs-tools.

kubevirt-virtctl can be installed on any machine with administrator access to the cluster. It
contains the virtctl tool, which provides syntactic sugar on top of the kubectl tool for virtual
machine resources. Although the kubectl tool can be used to manage virtual machines, it is a
bit awkward since, unlike standard Kubernetes resources, virtual machines maintain state. Mi-
gration is also unique to virtual machines. If a standard Kubernetes resource needs to be evac-
uated from a cluster node, it is destroyed and started again on an alternate node. Since virtual
machines are stateful, they cannot be destroyed and must be live-migrated away if a node is
under evacuation. The virtctl tool abstracts the complexity of managing virtual machines with
kubectl. It can be used to stop, start, pause, unpause and migrate virtual machines. virtclt
also provides access to the virtual machine's serial console and graphics server.

kubevirt-manifests contains the manifests, or recipes, for installing KubeVirt. The most inter-
esting les are /usr/share/kube-virt/manifests/release/kubevirt-cr.yaml and /usr/
share/kube-virt/manifests/release/kubevirt-operator.yaml. kubevirt-cr.yaml con-
tains the KubeVirt Custom Resource definition that represents the KubeVirt service. kube-
virt-operator.yaml is the recipe for deploying the KubeVirt operator, which deploys the
KubeVirt service to the cluster and manages its' lifecycle.

virt-api is a cluster component that provides the Kubernetes API extension for virtual machine
resources. Like virt-api, virt-controller is a cluster component that watches for new ob-
jects created via virt-api, or updates to existing objects, and takes action to ensure the object
state matches the requested state. virt-handler is a DaemonSet and a node component that
has the job of keeping the cluster-level virtual machine object in sync with the libvirtd do-
main running in virt-launcher. virt-handler can also perform node-centric operations like
configuring networking and/or storage on the node per the virtual machine specification. virt-
launcher is also a node component and has the job of running libvirt plus qemu to provide
the virtual machine environment. virt-launcher is a lowly pod resource. libguestfs-tools
is a component providing a set of utilities for accessing and modifying VM disk images.

3 KubeVirt components | SLES 15 SP6

virt-operator implements the Kubernetes operator pattern. Operators encode the human
knowledge required to deploy, run and maintain an application. Operators are a Kubernetes
Deployment resource type and are often used to manage the custom resources and custom con-
trollers that together provide a more complex Kubernetes application such as KubeVirt.

2 Installing KubeVirt on Kubernetes
KubeVirt can be installed on a Kubernetes cluster by installing the kubevirt-manifests pack-
age on an admin node, applying the virt-operator manifest, and creating the KubeVirt custom
resource. For example, on a cluster admin node execute the following:

> sudo zypper install kubevirt-manifests
> kubectl apply -f /usr/share/kube-virt/manifests/release/kubevirt-operator.yaml
> kubectl apply -f /usr/share/kube-virt/manifests/release/kubevirt-cr.yaml

After creating the KubeVirt custom resource, virt-operator deploys the remaining KubeVirt
components. Progress can be monitored by viewing the status of the resources in the kubevirt
namespace:

> kubectl get all -n kubevirt

The cluster is ready to deploy virtual machines once virt-api, virt-controller, and virt-
handler are READY with STATUS “Running”.

Alternatively it is possible to wait until KubeVirt custom resource becomes available:

> kubectl -n kubevirt wait kv kubevirt --for condition=Available

Some KubeVirt functionality is disabled by default and must be enabled via feature gates. For
example, live migration and the use of HostDisk for virtual machine disk images are disabled.
Enabling KubeVirt feature gates can be done by altering an existing KubeVirt custom resource
and specifying the list of features to enable. For example, you can enable live migration and
the use of HostDisks:

> kubectl edit kubevirt kubevirt -n kubevirt
 ...
 spec:
 configuration:
 developerConfiguration:
 featureGates:

4 Installing KubeVirt on Kubernetes | SLES 15 SP6

 - HostDisk
 - LiveMigration

Note
The names of feature gates are case-sensitive.

3 Updating the KubeVirt deployment

Updating KubeVirt is similar to the initial installation. The updated operator manifest from the
kubevirt-manifests package is applied to the cluster.

> sudo zypper update kubevirt-manifests
> kubectl apply -f /usr/share/kube-virt/manifests/release/kubevirt-operator.yaml

4 Deleting KubeVirt from a cluster

KubeVirt can be deleted from a cluster by deleting the custom resource and operator:

> kubectl delete -n kubevirt kubevirt kubevirt # or alternatively: kubectl delete -f /
usr/share/kube-virt/manifests/release/kubevirt-cr.yaml
> kubectl delete -f /usr/share/kube-virt/manifests/release/kubevirt-operator.yaml

Note
It is important to delete the custom resource rst otherwise it gets stuck in the Termi-
nating state. To x that the resource finalizer needs to be manually deleted:

> kubectl -n kubevirt patch kv kubevirt --type=json -p '[{ "op": "remove", "path":
 "/metadata/finalizers" }]'

After deleting the resources from Kubernetes cluster the installed KubeVirt RPMs can be removed
from the system:

> sudo zypper rm kubevirt-manifests kubevirt-virtctl

5 Updating the KubeVirt deployment | SLES 15 SP6

5 Containerized Data Importer
Containerized Data Importer (CDI) is an add-on for Kubernetes focused on persistent storage
management. It is primarily used for building and importing Virtual Machine Disks for KubeVirt.

5.1 Installing CDI

CDI can be installed on a Kubernetes cluster in a way similar to KubeVirt by installing the RPMs
and applying the operator and custom resource manifests using kubectl:

> sudo zypper in containerized-data-importer-manifests
> kubectl apply -f /usr/share/cdi/manifests/release/cdi-operator.yaml
> kubectl apply -f /usr/share/cdi/manifests/release/cdi-cr.yaml

5.2 Updating and deleting CDI:

To update CDI:

> sudo zypper update containerized-data-importer-manifests
> kubectl apply -f /usr/share/cdi/manifests/release/cdi-operator.yaml

To delete CDI:

> kubectl delete -f /usr/share/cdi/manifests/release/cdi-cr.yaml
> kubectl delete -f /usr/share/cdi/manifests/release/cdi-operator.yaml
> sudo zypper rm containerized-data-importer-manifests

6 Running virtual machines
Two of the most interesting custom resources provided by KubeVirt are VirtualMachine (VM)
and VirtualMachineInstance (VMI). As the names imply, a VMI is a running instance of a VM.
The lifecycle of a VMI can be managed independently from a VM, but long-lived, stateful virtual
machines are managed as a VM. The VM is deployed to the cluster in a shutoff state, then acti-
vated by changing the desired state to running. Changing a VM resource state can be done with
the standard Kubernetes client tool kubectl or with the client virtctl provided by KubeVirt.

The VM and VMI custom resources make up part of the KubeVirt API. To create a virtual ma-
chine, a VM or VMI manifest must be created that adheres to the API. The API supports setting
a wide variety of the common virtual machine attributes, for example, model of vCPU, number

6 Containerized Data Importer | SLES 15 SP6

of vCPUs, amount of memory, disks, network ports, etc. Below is a simple example of a VMI
manifest for a virtual machine with one Nehalem CPU, 2G of memory, one disk, and one net-
work interface:

apiVersion: kubevirt.io/v1
kind: VirtualMachineInstance
metadata:
 labels:
 special: vmi-host-disk
 name: sles15sp2
spec:
 domain:
 cpu:
 model: Nehalem-IBRS
 devices:
 disks:
 - disk:
 bus: virtio
 name: host-disk
 interfaces:
 - name: green
 masquerade: {}
 ports:
 - port: 80
 machine:
 type: ""
 resources:
 requests:
 memory: 2048M
 terminationGracePeriodSeconds: 0
 networks:
 - name: green
 pod: {}
 volumes:
 - hostDisk:
 path: /hostDisks/sles15sp2/disk.raw
 type: Disk
 shared: true
 name: host-disk

Applying this VMI manifest to the cluster creates a virt-launcher container running libvirt and
qemu, providing the familiar KVM virtual machine environment.

> kubectl apply -f sles15sp2vmi.yaml
> kubectl get vmis

7 Running virtual machines | SLES 15 SP6

Similar to other Kubernetes resources, VMs and VMIs can be managed with the kubectl client
tool. Any kubectl operation that works with resource types works with the KubeVirt custom
resources, for example, describe, delete, get, log, patch, etc. VM resources are a bit more awk-
ward to manage with kubectl. Since a VM resource can be in a shutoff state, turning it on
requires patching the manifest to change the desired state to running. Find an example below:

> kubectl patch vm sles15sp2 --type merge -p '{"spec":{"running":true}}'

The virtctl tool included in the kubevirt-virtclt package provides syntactic sugar on top
of kubectl for VM and VMI resources, allowing them to be stopped, started, paused, unpaused
and migrated. virtctl also provides access to the virtual machine's serial console and graphics
server. Find an example below:

> virtctl start VM
> virtctl console VMI
> virtctl stop VM
> virtctl pause VM|VMI
> virtctl unpause VM|VMI
> virtctl vnc VMI
> virtctl migrate VM

7 Live migration

KubeVirt supports live migration of VMs. Though this functionality must rst be activated by
adding LiveMigration to the list of feature gates in the KubeVirt custom resource.

> kubectl edit kubevirt kubevirt -n kubevirt

spec:
 configuration:
 developerConfiguration:
 featureGates:
 - LiveMigration

8 Live migration | SLES 15 SP6

7.1 Prerequisites

All the Persistent Volume Claims (PVCs) used by a VM must have ̀ ReadWriteMany` (RWX)
access mode.

VM pod network binding must be of type masquerade:

spec:
 domain:
 devices:
 interfaces:
 - name: green
 masquerade: {}

Whether live migration is possible or not can be checked via the VMI.status.conditions eld
of a running VM spec:

> kubectl describe vmi sles15sp2

Status:
 Conditions:
 Status: True
 Type: LiveMigratable
 Migration Method: BlockMigration

7.2 Initiating live migration

Live migration of a VMI can be initiated by applying the following yaml le:

apiVersion: kubevirt.io/v1
kind: VirtualMachineInstanceMigration
metadata:
 name: migration-job
spec:
 vmiName: sles15sp2

> kubectl apply -f migration-job.yaml

Alternatively it is possible to migrate a VM using virtctl tool:

> virtctl migrate VM

9 Prerequisites | SLES 15 SP6

7.3 Cancelling live migration

Live migration can be canceled by deleting the existing migration object:

> kubectl delete VirtualMachineInstanceMigration migration-job

8 Volume hotplugging
KubeVirt allows hotplugging additional storage into a running VM. Both block and le system
volume types are supported. The hotplug volumes feature can be activated via the HotplugVol-
umes feature gate:

> kubectl edit kubevirt kubevirt -n kubevirt

spec:
 configuration:
 developerConfiguration:
 featureGates:
 - HotplugVolumes

Assuming that hp-volume is an existing DataVolume or PVC, virtctl can be used to operate
with the volume on a runnig VM:

> virtctl addvolume sles15sp2 --volume-name=hp-volume
> virtctl removevolume sles15sp2 --volume-name=hp-volume

9 Running Windows VMs with VMDP ISO
The VMDP ISO is provided in the form of a container image which can be consumed by KubeVirt.
To run a Windows VM with VMDP ISO attached, the corresponding containerDisk needs to
be added to the VM definition:

spec:
 domain:
 devices:
 disks:
 - name: vmdp
 cdrom:
 bus: sata

10 Cancelling live migration | SLES 15 SP6

volumes:
 - containerDisk:
 image: registry.suse.com/suse/vmdp/vmdp:latest
 name: vmdp

Note
The sequence in which the disks are defined affects the boot order. It is possible to specify
the bootOrder explicitly or otherwise sort the disk items as needed.

10 Supported features

Guest Agent Information

Live migration

Hotplug volumes

VMI Dedicated CPU resource

10.1 VMI virtual hardware

machine type

BIOS/UEFI/SMBIOS

cpu

clock

RNG

CPU/Memory limits and requirements

tablet input

hugepage

11 Supported features | SLES 15 SP6

10.2 VMI disks and volumes

Disk types:

lun

disk

cdrom

Volume sources:

cloudInitNoCloud

cloudInitConfigDrive

persistentVolumeClaim

dataVolume

ephemeral

containerDisk

emptyDisk

hostDisk

configMap

secret

serviceAccount

downwardMetrics

High performance features:

IO threads

Virtio Block Multi-Queue

Disk cache

12 VMI disks and volumes | SLES 15 SP6

10.3 VMI interfaces and networks

Network (back-end) types:

pod

multus

Interface (front-end) types:

bridge

masquerade

11 Debugging
If issues are encountered the following debug resources are available to help identify the prob-
lem.

The status of all KubeVirt resources can be examined with the kubectl get command:

> kubectl get all -n kubevirt

Resources with failed status can be further queried by examining their definition and expanded
status information.

> kubectl describe deployment virt-operator
> kubectl get deployment virt-operator -o yaml -n kubevirt
> kubectl describe pod virt-handler-xbjkg -n kubevirt
> kubectl get pod virt-handler-xbjkg -o yaml -n kubevirt

Logs from the problematic KubeVirt pod can contain a wealth of information since stderr and
service logging from within the pod is generally available via the Kubernetes log service:

> kubectl logs virt-operator-558c57bc4-mg68w -n kubevirt
 > kubectl logs virt-handler-xbjkg -n kubevirt

If the underlying pod is running but there are problems with the service running in it, a shell
can be accessed to inspect the pod environment and poke at its service:

> kubectl -n kubevirt exec -it virt-handler-xbjkg -- /bin/bash

13 VMI interfaces and networks | SLES 15 SP6

	Using KubeVirt on SUSE Linux Enterprise
	1. KubeVirt components
	2. Installing KubeVirt on Kubernetes
	3. Updating the KubeVirt deployment
	4. Deleting KubeVirt from a cluster
	5. Containerized Data Importer
	5.1. Installing CDI
	5.2. Updating and deleting CDI:

	6. Running virtual machines
	7. Live migration
	7.1. Prerequisites
	7.2. Initiating live migration
	7.3. Cancelling live migration

	8. Volume hotplugging
	9. Running Windows VMs with VMDP ISO
	10. Supported features
	10.1. VMI virtual hardware
	10.2. VMI disks and volumes
	10.3. VMI interfaces and networks

	11. Debugging

